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SUMMARY

In this paper we investigate local adaptive re�nement of unstructured hexahedral meshes for compu-
tations of the �ow around the DU91 wind turbine airfoil. This is a 25% thick airfoil, found at the
mid-span section of a wind turbine blade. Wind turbine applications typically involve unsteady �ows
due to changes in the angle of attack and to unsteady �ow separation at high angles of attack. In order
to obtain reasonably accurate results for all these conditions one should use a mesh which is re�ned
in many regions, which is not computationally e�cient. Our solution is to apply an automated mesh
adaptation technique.
In this paper we test an adaptive re�nement strategy developed for unstructured hexahedral meshes

for steady �ow conditions. The automated mesh adaptation is based on local �ow sensors for pressure,
velocity, density or a combination of these �ow variables. This way the mesh is re�ned only in those
regions necessary for high accuracy, retaining computational e�ciency. A validation study is performed
for two cases: attached �ow at an angle of 6◦ and separated �ow at 12◦. The results obtained using our
adaptive mesh strategy are compared with experimental data and with results obtained with an equally
sized non-adapted mesh. From these computations it can be concluded that for a given computing time,
adapted meshes result in solutions closer to the experimental data compared to non-adapted meshes for
attached �ow. Finally, we show results for unsteady computations. Copyright ? 2005 John Wiley &
Sons, Ltd.

KEY WORDS: computational �uid dynamics; mesh adaptation; �nite volume method; wind turbine
airfoil

1. INTRODUCTION

In the design process of new rotor blades for wind turbines the need for aerodynamic predic-
tions is very important. At present it is common in the design process and in the dynamic load
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calculations for turbine certi�cation to use the blade element method (BEM) for calculation
of the aerodynamic forces, as described in the review papers [1, 2]. With this method cases
can be computed fast, due to many simpli�cations in the �ow model. In comparisons with
wind tunnel measurements uncertainties of up to 20% in the BEM load calculations have been
reported. For the ever-growing investment costs and risks of ever-growing wind turbines a
smaller uncertainty is necessary. At present increasing e�ort goes into the development and
validation of full Navier–Stokes codes for simulation of �ows around wind turbines. Of the
21 codes that were compared in the NREL unsteady aerodynamics experiment code compari-
son study [3, 4], three were Navier–Stokes codes. Another example is the European VISCEL
research project, which included speci�c tasks for the validation and assessment of existing
Navier–Stokes solvers [5, 6].
At the same time it is presently not feasible to use CFD directly in design iterations or in

the determination of a complete load set for certi�cation purposes, since the computer time
needed is still excessive. A typical mesh around a blade contains around 6 million points and
many cases are unsteady. All CFD computations for wind turbine �ows found in literature
employ a non-adapted mesh, re�ned in a large region where most activity is expected. The
re�nement regions are implemented manually and are large as they have to cover the unsteady
wake at all times.
We believe that the e�ciency of CFD calculations for wind turbine applications can be

greatly improved using automated mesh adaption algorithms. Many papers have been published
on adaptive algorithms for steady �ows, from a theoretical approach [7], to tests of speci�c
adaptive algorithms. Most of these papers contain a speci�c choice of adaptation parameters
and do not provide an evaluation of their adaptive strategy. Furthermore, to our best knowledge
no papers have appeared performing adaptive computations for �ow around wind turbines.
For an accurate and e�cient computation of time-dependent �ows mesh adaptation

is especially important as the phenomenon evolves through the computational domain. In
order to avoid too many �ne cells or remeshing too often the evolution of the �ow phenom-
ena has to be predicted with some accuracy. This prediction should also be e�cient. Not
many papers have appeared so far on grid adaptation for unsteady �ows. Good results have
been obtained for time-dependent �ows with �nite element discretization by [8, 9] with an
internal loop in which the transient �xed point iteration is solved using error estimate based
on the Hessian of the solution. However, an estimate of the work involved, especially the
work saved by the adaptation methods was not given.
Most adaptive algorithms use unstructured tetrahedral [10] or hybrid meshes [11]. A dis-

advantage of tetrahedral meshes for high-Reynolds number viscous simulations, such as our
wind turbine application, is the relatively low accuracy in boundary layers. A few papers
have appeared on adaptive algorithms for fully Cartesian meshes [12, 13]. With these meshes
special attention should be paid to the cut cells that intersect the bodies. Very few publica-
tions have appeared on body-�tted unstructured all-hexahedra meshes, mainly due to the great
di�culty of devising automated grid generation algorithms. Recently, a new body-conforming
octree mesh generation technique proposed by several authors [14, 15] has been adopted and
extended to incorporate mesh adaptation by Patel [16]. These unstructured hexahedral meshes
combine the favourable accuracy of hexahedral meshes inside boundary layers with the ease
of grid generation of unstructured meshes. Furthermore, hexahedral cells can be easily re-
�ned anisotropically, which greatly enhances the e�ciency of computations of �ows with
signi�cantly di�ering length scales.
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In this paper we validate the adaptive algorithm using unstructured hexahedral meshes
developed by Patel [16, 17], comparing with experiments and results of non-adapted compu-
tations. Questions that will be addressed are: what is the best adaptation strategy? How much
does the accuracy improve using this strategy? The algorithm which adapts to local �ow
features for unstructured hexahedral meshes will be tested for two-dimensional �ow around
the DU91 wind turbine airfoil. Experimental results are taken from the experimental database
for the DU91 wind turbine airfoil that is being built at the Delft University of Technology.
As three-dimensional and unsteady calculations are expensive and useless if we are unable
to reproduce results for two-dimensional �ows, we start with low angles of attack that re-
sult in steady two-dimensional �ows. Thereafter validation is performed for larger angles of
attack. For unsteady �ows validation of unadapted computations using various time steps is
performed. The results of this study provide directions for our current development of an
e�cient unsteady adaptive �ow solver.

2. THE FLOW SOLVER

The �ow solver used is Hexstream, developed by NUMECA Int. The �ow is modelled by
the Reynolds-averaged Navier–Stokes equations in combination with the one-equation tur-
bulence model of Spalart–Almaras (S–A model) [18]. Results reported for this model for
three-dimensional blade simulations showed reasonable accuracy [5] even at angles of attack
in the beginning of the stall regime. The tripping point is chosen to be equal to the location
found from the experiments.
Space discretization is performed on a body-conforming unstructured hexahedral mesh using

a cell centred, conservative, �nite volume scheme. The convective �ux is discretized using
a second order central scheme with Jameson-type scalar arti�cial dissipation [19]. Time inte-
gration is performed using a standard second order backward di�erencing technique. Solution
of the implicit system of equations is obtained using a dual time stepping scheme with an
explicit four-stage Runge–Kutta scheme [20]. Convergence acceleration for steady state is ob-
tained using local time stepping and implicit residual smoothing. The solution procedure is
embedded into a sophisticated agglomeration multigrid algorithm [16]. Although the solver
has a low-Mach number preconditioning capability this was not used for the cases presented.

3. THE ADAPTIVE MESH ALGORITHM

The local mesh adaptation algorithm is fully automated and is based on the detection of �ow
variable gradients, see also Reference [16]. Mesh adaptation based on �ow feature detection
consists of three consecutive steps:

1. The �ow solution is calculated on the initial mesh.
2. One or more suitable sensors are calculated in each cell.
3. Threshold values for re�nement and coarsening are computed and cells are �agged for
coarsening and re�nement.

4. Mesh coarsening is performed. The �ow solution is transferred to the new mesh using
averaging and grid hierarchy.
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5. Mesh re�nement is performed on the coarsened mesh. The �ow solution is transferred
to the new mesh using grid hierarchy.

6. A new �ow solution is computed on the newly adapted grid.

Please note that solution transfer to the new mesh in our algorithm only provides an initial
solution for the �ow solve on the new mesh performed in step 6. Steps 2–5 are now discussed
in more detail. For more information see References [16, 17, 20].

3.1. Sensors

For the adaptation face-centred sensor formulations are used because they naturally involve
anisotropic re�nement. As sensors we have chosen pressure and velocity magnitude, since most
of the �ow features can then potentially be captured. For the present low-speed application,
density is obviously not used. Flow feature detectors are computed on face centres according
to the left and right neighbouring cells. For these �ow feature detectors we use a �nite
di�erence formulation:

Sk =
|UL −UR|
Uav| (1)

where UL and UR are the �ow quantity values in the left and right cells, respectively, and
Uav is its average value over the whole computational domain. This is a non-dimensional
formulation. Next to the above �nite di�erence formulation, divided and multiplied di�erence
formulations can also be found in the literature [16]. In these cases Equation (1) is either
divided or multiplied by the distance between the neighbouring cell centres resulting in a
dimensional feature detector. In the divided di�erence the distance term tends to increase the
detector value in small cells and therefore strengthens the sensor behaviour. The multiplied
di�erence has an opposite behaviour and may asymptotically prevent re�nement in excessively
clustered regions. Their behaviour, however, is extremely case dependent. Other formulations
like pure second order di�erences [21] or ratios of �rst and second order di�erences [22] have
also been proposed and might be tested in the future.

3.2. Threshold values

Threshold values are necessary to determine which cells should be re�ned or coarsened.
Instead of relying completely on a manual threshold determination a common statistical
formulation is used. Assuming the sensor statistical distribution over the domain is Gaus-
sian, the optimum threshold values for re�nement Tr and coarsening Tc are de�ned by [23]:

Tr = Sav + �rSstd (2)

Tc = Sav − �cSstd (3)

In these equations Sav denotes the average value of the sensor in the �ow �eld and Sstd
is the standard deviation. Furthermore, �r and �c are re�nement and coarsening parameters
respectively. In the next section the in�uence of these parameters on the adaptation procedure
and solution is investigated.
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3.3. Re�nement and coarsening

When the sensor evaluation in a face exceeds the prescribed re�nement threshold, the neigh-
bouring cells are �agged for re�nement in the direction parallel to the face. A balancing
function is implemented to smooth re�nement by propagating �ags such that only one hang-
ing node=edge is tolerated and the di�erence in re�nement level between two neighbouring
cells in the direction parallel to their common face cannot exceed one. Furthermore, holes in
the mesh are prevented by re�ning cells of which the two neighbouring cells are �agged for
re�nement too.
The mesh coarsening technique is based on the hierarchical property of the mesh adaptation

data structure. As the mesh entities’ parents are stored during the re�nement process, these
parents can be recovered when their children are removed. Mesh coarsening is less local than
re�nement, as all siblings are considered before a cell is coarsened. Due to the following two
properties coarsening is less likely to occur than re�nement:

• When siblings are �agged for both coarsening and re�nement, which is possible when
two or more sensors are used, re�nement has priority.

• At least 75% of the sibling cells must be �agged for coarsening, then the remaining
sibling cells are also �agged for coarsening, even if they were �agged for re�nement.

The last point can be demonstrated with the following case. For a cell to be coarsened three
of its four cells should be �agged for coarsening. After coarsening of this cell the number
of cells is reduced by three. So for coarsening we need three �ags for three cells less. For
re�nement there is a case where we only need two �ags for �ve extra cells. That is, when two
faces of a cell of which one is oriented in the local � and one along the � axis are �agged
for re�nement, the cells on each side of the face will be divided in two. As a result the cell
will be divided into four cells and two neighbouring cells will be re�ned in one direction
too. In the old situation we had three cells in the new we have eight. As adaptation for an
actual �ow computation will consist of a variety of re�nement and coarsening con�gurations
it is hard to exactly predict the growth in number of cells. However, we can say that when
the sensor has a Gaussian distribution, the number of coarsening and re�nement �ags will
be equal. Consequently, due to the above described process the total number of cells will
increase.

4. THE PROBLEM

The airfoil we selected is the 25% thick DU91 wind turbine airfoil (Figure 2), found typically
at the mid-span section of a wind turbine blade. The airfoil was designed at the Institute for
Wind Energy of the Delft University of Technology; its full name is DU91-W2-250 [24].
The thickness of this airfoil is quite large compared to airfoils commonly used in aeronautics,
which complicates the computation of �ows with �ow solvers. It is therefore an ideal test
case to judge the capabilities of the current �ow solver and in particular the adaptive mesh
strategy.

4.1. Experiments
The experiments for validation of the computational results were performed at the low-speed-
low-turbulence wind tunnel of the Delft University of Technology. The wind tunnel has a
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Table I. Experimental results corrected for wind tunnel walls.

Angle Re M Cl Cd Trans.pt. u.s. Trans.pt. l.s.

1◦ 3× 106 0.21 0.525 0.00777 0.47 0.46
6:24◦ 1× 106 0.174 1.132 0.01209 0.43 0.53
12:24◦ 1× 106 0.174 1.216 0.05067 0.12 0.58
40◦ 1× 106 0.174 0.976 0.840 0 0

Figure 1. Flow visualization for angles of attack of 6:24◦, 12:24◦ and 40◦.

low turbulence intensity of 0.06%. Its test section has a cross section of 1:23× 1:80 m. The
experiments were performed on a clean-con�guration without forced transition–tripping. The
resulting natural transition and separation points were measured on both the upper and lower
surface. Four angles of attack equal to 1◦, 6:21◦, 12:21◦, and 40◦ were chosen, as each of
these is representative for a speci�c �ow regime. Reynolds numbers range from 1× 106 to
3× 106, Mach numbers from 0.174 to 0.21. The angles of attack mentioned earlier are the
actual angles in the wind tunnel. As the computations have been performed for a free air
case, corrections for the wind tunnel walls have to be made to the experimental lift and
drag coe�cients and angles of attack. These corrections are based on Allen and Vincenti’s
method [25]. The corrected results are presented in Table I.
For an angle of attack of 1◦ the �ow is fully attached. At 6◦ there is a very small separation

bubble, while 12◦ is in the stall regime. As can be seen from Figure 1 stall cells develop
along the blade. At 40◦ the �ow is massively separated. The result is an unsteady �ow, where
vortices are shed downstream. The oil pattern shown in Figure 1 is too slow to capture this.
For this unsteady case the lift and drag coe�cients shown in Table I are averages over time.
Note that the �ow topology for 1◦ and 6◦ is two-dimensional. The other angles of attack
are included in order to determine the di�erence between two- and three-dimensional �ow
topologies for these cases. For example, for the unsteady �ow at the largest angle of attack
time averaged values of experiment and computation might compare well with each other.
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4.2. Computations

The boundaries of the computational domain are placed at 10 chords upstream, 60 chords
downstream and 30 chords above and below the airfoil. For this choice it was found that
extension of the domain by a factor of 1.5 only resulted in changes in Cl of 0.05% and
in Cd of 0.4%. Boundary conditions upstream and on the upper and lower boundary are
freestream conditions. At the downstream boundary condition a pressure out�ow condition is
given. For the Spalart–Allmaras turbulence model, the transition points are given to be equal
to those found in the experiments. The iterative convergence criterion is that the residuals have
dropped �ve orders of magnitude with respect to the initial solution. The adaptation strategy
will be investigated for 1◦ angle of attack. Hereafter validation will be performed for 6◦, 12◦

and 40◦.

5. DETERMINATION OF ADAPTIVE STRATEGY

For steady, attached �ow at an angle of attack of 1◦ an investigation into the adaptive mesh
strategy is performed. Questions are the choice of: (a) the �ow sensor(s) (b) the re�ne-
ment and coarsening parameters and (c) the number of mesh adaptation steps. The Reynolds
number is 3× 106, the Mach number is 0.21. The initial solution is a uniform �ow �eld
with p=1 atm, �=1:225 kg=m3; T =288 K and V =71:44 m=s. The initial mesh has a box
structure with a set of uniformly re�ned boxes close to the airfoil, see Figure 2. This initial
mesh was chosen after comparison of lift and drag coe�cients on non-adapted meshes of
similar size. The initial mesh has approximately 41 k cells.
In order to assess the accuracy we have to compare our results to a reference or true

solution. As true solution we take in this case the experimental lift and drag coe�cient.
These experimental values are not the true solution of our model equations, as the di�erence
is equal to the model error. However, as can be seen from Table II for this case the lift and
drag coe�cient converge to the experimental values as the number of adaptations is increased,
so we can conclude that the numerical error on the present meshes is dominant. Furthermore,
due to its small value for this case the relative error in drag (%�Cd) is much harder to
predict correctly, than that in lift.

Figure 2. Initial mesh with approximately 41k cells.
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Table II. Lift and Drag coe�cients for 0 to 3 adaptation steps compared
to experimental values; pressure sensor, �r =�c = 0:3.

Source # cells Cl % �Cl Cd % �Cd

No adaptation 41k 0.566 6.9 0.01355 74.3
1 adaptation 73k 0.574 8.9 0.00923 18.8
2 adaptations 153k 0.555 5.3 0.00867 11.6
3 adaptations 362k 0.545 3.4 0.00855 10.0
Experiment 0.527 0.00777

5.1. In�uence of �ow sensor

First, the in�uence of the �ow sensor is investigated. Hereto meshes and resulting lift and
drag coe�cients are compared for three sensors: the velocity sensor, the pressure sensor and
a combination of velocity and pressure sensor. These sensors were chosen because for the
present low-speed application, pressure and velocity are the principle unknowns. For this
study the re�nement and coarsening parameters are kept constant at 0.3 and the number of
adaptation steps is equal to three.
In Figure 3 the pressure coe�cient cp for adaptation based on the three sensor choices

is compared to the experiment. The largest di�erence is found at 0.8 of the chord at the
lower surface of the airfoil, where the pressure sensor clearly results in the most accurate
cp. This is not immediately clear, studying the lift and drag coe�cient only. For the lift
coe�cient the underprediction of all three computations at the bottom between 0.05 and 0.4
is compensated by the overprediction at the bottom around 0.8. Therefore, the lift and drag
coe�cients presented in Table III are slightly misleading. However, as the relative di�erence
between lift predictions (3.4% vs 2.7%) is much smaller than that for the drag prediction
(10% vs 26%), and as the drag prediction is the best for the pressure sensor, the pressure
sensor is chosen for the rest of the adaptation study. Although, we have been unable to
identify the exact reason for the success of the pressure sensor, a closer look at the resulting
meshes sheds some light at the underlying reason.
In Figures 4–6 the adapted meshes are shown for the three sensors. As can also be seen

from Table III the velocity sensor leads to the smallest mesh. Apparently the �nite di�erence
sensor based on the velocity has a more compactly distribution, so that the same thresh-
old value of 0.3 results in much less re�nement. For the velocity sensor the cells in the
wake are not coarsened as much as for the other two sensors. It can also be seen that the
adapted meshes for the pressure sensor and the velocity and pressure sensor combined re-
semble each other closely. For the combined sensor in the far wake the coarsening of the
wake due to the pressure sensor dominates, although close to the airfoil a few more cells
in the wake are re�ned. The very �ne mesh close to the airfoil resulting from the pressure
sensor is probably responsible for the more accurate cp and drag prediction for these cases.
The reason for the increased accuracy of the drag for the pressure sensor alone remains
unclear.
Knowing that the initial mesh consisted of 41k cells, from Table III it is found that the

number of mesh cells increases signi�cantly for all three sensors. The increase is between
370% for the velocity and 976% for the combined sensor. There can be three reasons for this
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Figure 3. Pressure coe�cient for the three di�erent adaptation sensors
compared to the experiment; �r =�c = 0:3.

Table III. Lift and Drag coe�cients compared to experimental values
for pressure sensor, velocity sensor and pressure and velocity combined;

three adaptation steps, �r =�c = 0:3.

Sensor # cells % �Cl % �Cd

p 362k 3.4 10.0
u 192k 2.7 26.0
p and u 441k 2.8 17.5

Figure 4. Mesh after three adaptations with pressure sensor; �r =�c = 0:3.
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Figure 5. Mesh after three adaptations with velocity sensor; �r =�c = 0:3.

Figure 6. Mesh after three adaptations with pressure and velocity sensor; �r =�c = 0:3.

growth:

1. Re�nement is more likely to occur due to parameter choices in the adaptation process
(see Section 3).

2. There is a limit to the amount of coarsening, when the parent level is reached.
3. The distribution of the sensors is not symmetrical with a bias towards re�nement.

It is not straightforward to determine which of these is major and which minor. This is
currently under investigation.

5.2. In�uence of threshold values

As discussed in the previous section our threshold strategy involves the choice of two param-
eters: �r the re�nement parameter and �c the coarsening parameter. When they are chosen
equal the total number of cells will grow, due to the fact that in our strategy (also described
in the previous section) re�nement is more like to occur than coarsening. As the cell growth
is highly problem and sensor dependent, we decided for this study to chose �r and �c equal.
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Table IV. Lift and Drag coe�cients compared to exper-
imental values for di�erent threshold values; pressure

sensor, three adaptation steps.

�=� # cells % �Cl % �Cd

0.3 362k 3.4 10.0
0.5 311k 4.4 10.3
0.8 239k 5.7 13.0

Values of � and � close to 0 or 1 were far from optimal. Values of �r slightly close to 0
result in a situation where almost all cells are re�ned. Preliminary tests showed that �r should
at least be chosen larger than 0.1. For values of �r and �c above 1 very few cells were
marked for re�nement or coarsening resulting in a largely unchanged mesh.
Therefore, �r and �c were chosen to be 0.3, 0.5 and 0.8, together with the pressure sensor

and three adaptation steps. Note that for small �r and �c, the threshold-values are closer to the
mean, so that more mesh cells are adapted. From Table IV it is found that more adaptation
leads to more mesh cells, 362k for �r =�c = 0:3 vs 239k for �r =�c = 0:8. The most accurate
result is obtained on the most strongly adapted mesh. Choices smaller than 0.3 are, of course,
also possible. However, these cases resulted in meshes larger than 400k, too large for our
current workstation, and also outside the range we would recommend for two-dimensional
airfoil RANS computations. Another option to test smaller threshold values is to start from
a smaller mesh. However, it turned out that for a same accuracy more adaptation steps were
necessary.

5.3. In�uence of number of adaptation steps
In Table II the results for none up to three adaptation steps are shown for the pressure sensor
and �r =�c = 0:3. The resulting meshes are shown in Figures 7–9. From this it is found that
the �rst adaptation, is mainly used for re�nement very close to the airfoil and along the
pressure contours in the neighbourhood of the airfoil, which leads to the largest improvement
of the drag coe�cient from a 74.3 to 18.8% di�erence with the experiment. At the same
time, unfortunately, the lift coe�cient deteriorates from a 6.9 to 8.9% di�erence with the
experiment. Even after detailed study of the results we were unable to identify the reason
for this. However, the relative improvement of the drag prediction, known to be the hardest
of the two, is much larger than the lift deterioration. During the second and third adaptation
steps the re�nement in the same regions is even stronger. In these steps also the coarsening of
the mesh further away from the airfoil becomes apparent. In the second and third adaptation
the lift coe�cient improves again, to a di�erence of 3.4%, half of the value on the initial
grid. The improvement of the drag coe�cient clearly levels o�: 18.8–11.6% and 10.0%. More
adaptations led only to even smaller improvements, of which it might be concluded that after
three adaptations the modelling error has become dominant.

6. VALIDATION OF STEADY COMPUTATIONS

The adaptative mesh strategy determined in the previous section for 1◦ is now validated for
the other steady cases, i.e. angles of attack of 6:24◦ and 12:24◦, described in Section 4.
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Figure 7. Mesh after one adaptation with pressure sensor; �r =�c = 0:3.

Figure 8. Mesh after two adaptations with pressure sensor; �r =�c = 0:3.

Figure 9. Mesh after three adaptations with pressure sensor; �r =�c = 0:3.
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Hereto the lift and drag coe�cients are compared to those computed on a non-adapted mesh,
results computed with another non-adaptive �ow solver and with the experiments. This other
�ow solver is also a RANS solver with the same S–A model. It has the same discretization
technique as ours. Main di�erences are the character of the mesh—structured vs unstructured—
the computational mesh, which consists of almost twice the number of mesh points, and the
iterative solution technique—pressure correction vs pseudo-time. The adaptation strategy con-
sists of a combination of the pressure sensor, �r =�c = 0:3 and three adaptation steps.

6.1. The 6:24◦ test case

The results of the validation for the 6:24◦ test case are presented in Table V. From this
it can be concluded that adaptation signi�cantly improves the relative accuracy of the drag
coe�cient (from 34 to 21%), with a small deterioration of the lift coe�cient (1 to 3%). The
di�erent �ow solver without adaptive capabilities with 50% more mesh cells is signi�cantly
more accurate in the drag prediction (5 vs 21%), although the lift is less accurate (6 vs
3%). Also pressure coe�cients are compared between adapted computations and experiment,
see Figure 10. Then it is found that especially the small plateau around the small separation

Table V. Validation of the 6:24◦ test case.

# cells Cl Cd

Experiment 1.132 0.01209
Adaptation 334k 1.161 3% 0.01459 21%
No adaptation 334k 1.147 1% 0.01615 34%
Other �ow solver 501k 1.197 6% 0.0115221 5%
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Figure 10. Pressure distribution at 6:24◦ compared to experimental results; pressure
sensor, �r =�c = 0:3, three adaptation steps.
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bubble on the lower side of the airfoil at 0.5 is not captured. As the pressure only changes
weakly in a separation region, this might be an artefact of our pressure sensor. The velocity
sensor or a combination of velocity and pressure, however, did not change this behaviour.
Also interesting to note are the wiggles in cp at the nose of the airfoil. These wiggles are
caused by the cell size of the computational mesh that has become smaller than the cell size
of the geometric representation of the airfoil. As a consequence the ‘abrupt’ changes in the
geometry are seen by the mesh. This might also decrease the overall accuracy.

6.2. The 12.24◦ test case

The results of the validation for the 12:24◦ test case are presented in Table VI. This case
is much harder than the lower angle of attack cases, since there is a signi�cant area with
separated �ow, as can be seen from the plateau in the pressure coe�cient shown in Figure 11.
Due to the three-dimensional nature of the �ow, see Figure 1, it is hard to draw conclusions
from the present two-dimensional computations. Furthermore, for this case the measurements
have a larger uncertainty caused by corrections performed to the wind tunnel data in order to

Table VI. Validation of the 12:24◦ test case.

# cells Cl Cd

Experiment 1.216 0.05067
Adaptation 304k 1.569 29% 0.03985 21%
No adaptation 304k 1.400 15% 0.03975 22%
Other �ow solver 501k 1.529 26% 0.03815 25%

x /c

cp

0 0.2 0.4 0.6 0.8 1

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

EXP[3]
Non-adapted
Adapted-pr

Figure 11. Pressure distribution at 12:24◦ compared to experimental results; pressure
sensor, �r =�c = 0:3, three adaptation steps.
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eliminate the in�uence of the wind tunnel walls which are inaccurate at larger angles of attack.
Both the other CFD code with 50% more cells and the adapted version of the present code
lead to less accurate results. It is, however, questionable at which location along the blade
span the experimental results should be taken for comparison. Therefore, three-dimensional
computations and measurements at various spanwise locations should be performed.

7. VALIDATION OF UNSTEADY COMPUTATIONS

As we are ultimately interested in unsteady �ows, validation for an unsteady case is per-
formed too. At this stage, however, the adaptation algorithm is not suitable for unsteady
�ows, so only non-adapted unsteady computations were performed. The computations are
performed for an angle of attack of 40◦ at which the �ow is massively separated. A compu-
tational mesh of 41 k cells was used, as more cells would lead to very large computational
times. A time step re�nement is performed: 4 time steps, of which three resulted in an un-
steady �ow, see Table VII. The computed frequency seems to converge to a value slightly
larger, in the order of 5%, than the measured frequency. This slight overprediction is likely
caused by the three-dimensional e�ects that are not captured in our two-dimensional com-
putations. For two-dimensional computations of vortex shedding behind a circular cylinder
similar overpredictions of the frequency compared to the experimental value have been found
[26–29]. The lift and drag coe�cient converge to values much larger than the measured val-
ues. For two-dimensional computations of �ow around a circular cylinder similar di�erences
have been reported [27, 29]. Furthermore, Mittal and Balachandar [28] showed by comparing
two-dimensional to three-dimensional computations that this is due to the three-dimensional
nature of the �ow, which resulted in a lower suction peak. Another possible explanation is
the turbulence model, which is known to be less accurate for separated �ows. For the largest
time step of �ve points=wavelength a steady solution is obtained. It is interesting to note that
for this case the lift and drag coe�cient prediction are considerably closer to the experimental
values than for the unsteady cases. The time averaged pressure coe�cient for the experiments
and unsteady computations using the smallest time step is compared to the pressure coe�cient
for the steady computations in Figure 12. There it can be seen that the unsteady computations
have a much stronger suction peak at the upper surface. Furthermore, the e�ect of the vortex
shedding can be seen from the increased pressure coe�cient at the end of the upper surface.
As lift and drag were overpredicted in the unsteady computations addition of signi�cant nu-
merical dissipation from the large time step results in lower time averaged values, which, in
this case, are closer to the experimental values.

Table VII. Validation of the 40◦ test case.

Pnts=wavelength av. Cl av. Cd Freq.

Experiment — 0.98 0.84 39.3
No adaptation 25.4 1.67 1.24 40.3
No adaptation 12.7 1.65 1.23 39.7
No adaptation 8.5 1.54 1.18 36.5
No adaptation 5 1.09 0.84 —

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:929–945



944 H. BIJL, A. H. VAN ZUIJLEN AND A. VAN MAMEREN

x /c

cp

0 0.2 0.4 0.6 0.8 1

-2

-1

0

1

experiment
unsteadyCFD
steadyCFD

Figure 12. Pressure distribution at 12:24◦ compared to experimental results; pressure
sensor, �r =�c = 0:3, three adaptation steps.

8. CONCLUSIONS

The present validation of adaptive mesh computations of �ow around a wind turbine airfoil
shows that:

• a good local adaptation strategy is obtained using:
◦ pressure sensor
◦ coarsening and re�nement parameters �r =�c = 0:3.
◦ three adaptation steps

• for steady attached �ows the accuracy using adaptation improves
• for steady separated �ow the accuracy using adaptation seems to deteriorate. This might
be due to the three dimensional nature of the �ow and=or the accuracy of the turbulence
model

• for unsteady �ows the non-adapted �ow solver gives promising results
Adaptive meshing clearly increases the potential of CFD for prediction of �ows around wind

turbines. Currently, the adaptation strategy is made suitable for unsteady �ow computations.
In the near future also adapted computations of unsteady cases with varying angles of attack
will be presented.
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